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ABSTRACT

For advection schemes based on fluctuation splitting, a design criterion of optimising the
time step leads to linear schemes that coincide with those designed for least truncation error.
A further stage of optimising the time step using a non-linear positivity criterion, leads to
considerable further gains in resolution.
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1. Introduction

This note is a contribution to the development of high resolution advection schemes for
use on (possibly) unstructured triangular meshes. The search is for a scheme that is positive
(admitting no new extrema) and as accurate as possible. Such schemes have an inherently
nonlinear dependence on the data, and revert near discontinuities to an essentially first-order
behavior. It is of interest to know what is the optimum positive first-order scheme, so that
performance near discontinuities is not excessively degraded.

The schemes considered in this paper belong to a class introduced in [1], and explored
more thoroughly in [2]. These papers, and also [3], should be consulted for more background.

2. Previous Work

Consider a triangular grid of which Figure 1 shows a generic element. On such a grid,
we wish to solve the two-dimensional advection equation

ut + . Vu =0 (1)

where a is a constant vector (a, b)T.
For each triangular element T define the "fluctuation"

oT I / Utdxdy.

By Equation (1) and Gauss' theorem

OT = u a. dn.

If u is assumed to vary linearly over the triangle

OT= ji (2)

where
k= a n, (3)

and ni is the inward (scaled) normal to the side opposite vi. Note that

-ki = 0

so that either one or two ki are positive. Geometrically, this corresponds to the vector a
crossing either one or two sides in the inward direction.

In [1,21 it is shown that part of a positive update process is to add, in the case of one inflow
side (which we call a type I triangle, Figure 2a) a quantity AtOT to the single downstream
vertex. If this is vi, then

'  +  + At T + (.) (4)

where (.) signifies the contributions, if any, coming from other triangles neighboring vi, and
Si is one-third the area of those triangles having vi as a vertex.

,-,, ,,,,,,,s,,, lm u m m mmlnm mllmmm mulll Nm lllllllN i l l || !i1



In the difficult case where there are two inflow sides, say those opposite vertices i and j
(a type II triangle) the proposed scheme is

iuiU+ 1 = S U' + CzAtqT +(.)
f (5)

"Si = SjOu + ajAt T + J
where, from a conservation argument,

a, ± a, = I.

It was proved in [1] (see also [21) that no choice of ai, a3 depending only on the geometry
of the triangle and its relation to the flow vector can give a positive scheme. The nonlinear
choice, which we call SI,

C,, = k,(U, _ Uk)/OkT f (6)
a, = k,(u, - Uk)/kT

was advocated in [1] on the grounds that it permitted a larger timestep than any other choice
(within a certain class). This scheme was found to be superior to regular finite-volume
upwinding in [2, 3] and we will point out in the next section that it bears an interesting
relationship to a recently published scheme of Sidilkover [4].

3. A Property of the Scheme S1

Substituting (6) into (5) gives the simple update method

su +  = su! - kAt(u! - u) + 0

s UU+ 1 = SuO - kjAt(u7 -u)±+(.) }
Let us see what (7) reduces to on a square mesh of side h. We assume that a, b are both

positive with a > b, and that the squares are divided into triangles along the diagonal with
positive slope, as in Figure 3a. Freedom to cut the squares along either diagonal greatly
enhances the performance of the schemes (R. Struijs, H. Deconinck, private communication,
von Karman Institute).

Each point then receives contributions from three triangles, A, B, C, in which the fluctu-
ations are

= 1 [(a - b)(uo - U3 )h + b(u - U3 )h]
2

= -[a(uo- U3 )h + b(U3 - U4 )hl

C= 2[(a- b)(u 5 - U4)h + b(uo- U4 )hl.

In each case, the fluctuations have been split as they would be by S, and those terms
contributing to the update of u0 have been underlined. Summing those terms, we find

Un1 = n _ At0 UO0 [a(u0 - U3)+ b(U3 - U4)1. (8)
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This is the scheme recently shown by Sidilkover [4] to have the least truncation error
among the linear monotone schemes for solving (1). It comes in eight different flavors
depending on the flow direction (Figure 4). (It may be remarked that whether the scheme
is linear or nonlinear depends on the viewpoint. Clearly (7) has constant coefficients, but
they change as the vector a moves into different octants. Written in the form (5), (6) the
expre.-sions that accomplish this switching give the appearance of nonlinearity.) Sidilkover
[4] calls (7) the N-scheme because it has a narrow stencil and, not by coincidence, yields
narrow discontinuities.

Now consider the squares divided along the other family of diagonals as in Figure 3b.
The fluctuations in the triangles adjoining 0 are

= -a(uo - U3 ) - b(U2 - U3 )

C B =-a(uo- U3 )- b(uo - us)

= -a(U6 - U5) - b(UO - U5)

and scheme S1 will credit the underlined terms to 0. The update formula is

U0  = A [a(uo U3) + b(Uo - U5)] (9)

which is just regular upwinding. For steady flows, the dissipation coefficient of (9) is

h
21sin cos01{1sinI + Icos 01}

whereas the dissipation coefficient of (8) is

h2 Isin 0 cos 011 cos 0 - sin 01

which is, on average, about four times smaller. There seems no reason why one should not
take advantage of this by choosing the triangulation appropriate to the problem. In the
non-linear case, of course, the choice might change with time.

4. Type II Triangles Revisited

The observation is made in [1, 2] that within each triangle T the advection velo ty a can
be replaced by

AT =A+A T (10)

where aT is orthogonal to VuT and A is an arbitrary parameter. This is tarnamount to saying
that only the component of a normal to the level lines of the solution ;-. relevant (Figure 5).
In any analysis relating to events within the triangle T, a can be rrAlaced by aT. There is
an intuitive attraction to making aT as small as possible, that is, taking it in the direction
VuT. Then we have

_aT= (= r t V UT V uT -= V 7 UT .  
(11)

3



A practical disadvantage to (9) is that in any region where the solution is almost uniform,

the numerator and denominator are both very small, and numerical expressions based on

(9) become ill-formed. This leads to slow, or halted, convergence. In [2], the expedient was

taken of abandoning (9) gradually in favor of a in regions where iV 'I is small. Below, we

will argue that (9) is anyway not optimal; the improved version leads also to better formed
expressions.

We commence the analysis by noting that if (10) is substituted into (3) we have

ki aT ni

= a*r + AaT n
i.

In the second inner product a is orthogonal to Vu and n is orthogonal to .where _
is the vector along the side opposite vi). Therefore

k, =a.zn +Au.s- (12)

so that
k= k* + A(u3 - U2)1

k2 = k* + A(u, - U3) (13)

kc3 = k; + A(u2 - ul)J

Here, kt, k2, k* are the original coefficients computed from (3), and equations (13) define

a one-parameter family of equally valid alternatives.
We pose the problem of choosing the k's so as to maximize the allowable time-step of

the scheme. This is clearly a desirable objective in itself but heuristically it seems to lead to

gains in accuracy also. (In one dimension, this criterion would lead us to classical upwinding

and in Section 3, we saw that it led to the optimum linear schemes in two dimensions.) From

(7), the scheme is positive for Type II triangles, if

1 rSi S,

where i,j are the downwind vertices, and where n is the maximum number of triangles

meeting at a point. Therefore, the relevant criterion is that

K = max ii, k1  (14)

should be positive but as small as possible.
Consider a diagram of which the axes are (k,/lS), (kj/S,). As A varies, a straight line

locus will be swept out whose slope is

A - S,(u, - Uk)

s - uk)
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Figure 6 shows such loci for given k*, k* (i.e., given geometry) for a range of A (i.e., a
range of data). For each locus, a star marks the point that minimizes K.

If the star falls on the vertical axis, the decision is to update only the point j; on the
horizontal axis we update only the point i. On the 45' line we have

ki kj

Si s;

so that, from (7)
-_ U U (15)

~T -

(where 6uT means the change at vertexi due to this triangle). This corresponds to keeping
the direction of Vu constant during the update process. Figure 6 demonstrates that this
is the best policy whenever A is negative, i.e., (u, - uk), (uj - uk) have the same sign. An
equivalent criterion is that the level line of the solution through vk does not pass through
the triangle. If the level line does pass through the triangle, we will only update one vertex.
Which vertex is chosen will depend whether the locus in Figure 6 passes above or below the
origin, and it is easy to demonstrate that this depends on the sign of qT.

The update algorithm is in fact, in pseudo-Fortran

If (only k,.gt.O)

update vi
goto end

endif

If (only kk.lt.O) then
If ((u. - uk)(u, - uk).gt.O) then

update ui, uj

else if ((ui - uk)0T.lt.O) then
update u,

else
update uj

endif
endif.

There are actually twelve different paths through this logic, although only six different
outcomes. It can be verified that the updates at the vertices depend C* continuously on all
aspects of the data. The only part of the algorithm that is badly formed arises if both ui,uj
are to be updated, in accordance with (15). The explicit formulae are then

U +Ui - U , - 0TAt (16a)
i SiUi Uk)+ S(UjUk)

Uj - uk(16b)

ju =Si(U, - k) + sj(U - )5
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and it is possible for the denominator to be small. However, we only reach this situation if
(u, - uk)(Uj - Uk) are of the same sign, so they must be small individually, and OT must also
be small. Thus, that triangle is in equilibrium, and can be ignored. In practice, we may test
to see if OT is less than some moderate multiple of machine zero.

We call this the NN scheme, signifying non-linear and narrow.

5. Results and Discussion

The schemes will be demonstrated on two test problems shown in Figure 7.
The first problem is to solve the equation

1
Ut + U, + -uY = 0

on the unit square with u = 1 specified on the left edge and u = 0 on the bottom edge. This
is the direction for which the N, and NN, schemes will show least advantage. The second
problem is to solve the equation

Ut + X UY - YU_ = 0

on the domain ne[-1, 1], yc[O, 1]. The characteristic lines here are circles centered on the
origin.

On all inflow boundaries we specify u = 0, except that on y = 0, we set u = 1 for
xe[-2, -1]. The steady solution of this problem is therefore

U = 1 if 1<9(X2 + y 2) < 4

= 0 otherwise.

In particular, when we plot u(x, 0) we expect, or at least hope, to see the input data for
x < 0 mirrored in the solution for x > 0. An interesting feature of examining the solution in
that way is that the dissipation error has been effectively integrated over all flow directions.

Figure 8(a) contains results from the regular upwind scheme for Problem 1 on a mesh of
31 x 31 nodes. The solution is very diffused, but would be even worse at a direction of 45*.

Figure 8(b) is obtained from the S1 scheme, but the mesh is triangulated in no preferential
direction (Figure 7(c)). The results are very slightly improved, although this cannot be
determined from the plots.

A very noticeable improvement comes from deploying the S1 scheme on a mesh trian-
gulated along the upgoing diagonals. The results are shown in Figure 8(c), and precisely
the same results are obtained using the N scheme on a square mesh. The discontinuity is
resolved over about half the number of mesh points. It is worth remarking that this reduces
by a factor of about 16 the computing cost of obtaining a solution with given resolution,
because half as many points are needed in each direction, half as much time is needed to
expel transients, and twice the timestep can be taken.

In Figure 8(d) we see results from the nonlinear scheme NN. Even on the isotropic mesh,
these are the best so far, but by choosing the correct triangulation, the further improvement
of Figure 8(e) is reached. Since this improves the resolution by a factor of 4, the cost at
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given resolution is reduced by about a factor of 64. Recall that the results from the optimum
scheme are actually worse for this flow angle. It is gratifying that the convergence history
is scarcely affected by any of these improvements. The residual stays almost constant for
about 80 timesteps, by which time the initial guess u - 0 has been purged by the wave
crossing the domain; after a further 70 to 80 timesteps, the solution is effectively converged.
All tests were made at a Courant number of 0.5, but in fact the optimum scheme could have
been run faster.

In Figure 9(a), the results are shown of the rctating advection problem on a mesh of 61
cells by 31 cells. Only the results for an optimized mesh are shown; the squares are cut by
their upgoing diagonals for x < 0, by their downgoing diagonals for x > 0. The square pulse
is preserved quite remarkably for a first-order scheme. Indeed, one may suspect that the step
function is some kind of eigenmode for the scheme, and that all data will be squared-off, as
happens for certain one-dimensional limiter schemes. To check this point, a narrow Gaussian
pulse was substituted as data and was again preserved rather well (Figure 9(b)).

To make some kind of comparison with regular upwinding, the calculation in Figure
9(c) was performed. To give the regular scheme a chance, four times as many mesh points
were used in each direction, i.e., 241 x 121. Even so, a very inferior result is achieved. In
comparison with the straight advection test, the optimum schemes show in a better light and
the regular scheme in a worse light. Their resolving powers differ here by a factor of about
10, and the cost of achieving given resolution changes by a factor of about one thousand.

6. Concluding Remarks

The schemes derived here have features with no close one-dimensional counterparts. They
actively select the stencil to be used, and the connectivity of the mesh, and depend non-
linearly on the data, all in the search for an optimal first-order scheme. They are of course
to be viewed as the first phase in a quest for higher-order schemes that may exploit the same
features. Nevertheless, their practical use in simulations of mixing and turbulent flows may
not be out of the question. The resolution that they achieve compares favorably with that
of formally higher-order schemes, and because all their operations are highly localized, the
schemes are very suitable for parallel implementation.
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Figure 1. Notation to describe a typical triangle.
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Figure 2. Triangles with one or two inflow sides.

,= ii I I I i II 
I IIIilI i I I II I I



2 A 1 8 2 1 8

A A
3 /7 3 07

B B

C C

5 6 5 6

(a) (b)

Figure 3. Square cells divided either correctly (a) or incorrectly (b) for flow with a, b both
positive.

Figure 4. Ia the N-scheme, point 0 is updated using whichever triangle contains the incoming
characteristic.
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lines
u = constant

Figure 5. The set of equivalent advection vectors.
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0 ki

Figure 6. The minimax problem that determines the largest allowable timestep.
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u=1
uu=O

(a) Problem 1 (b) Problem 2

(c) Section of 'isotropic' mesh

Figure 7. The Test Problems.
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